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Abstract – Let G = (V,E) be a graph with p vertices and q edges. 

A Mean Square Cordial Labeling of a Graph G with vertex set V 

is a bijection from V to {0, 1} such that each edge uv is assigned 

the label  ( ⌈(𝒇(𝒖))𝟐 + (𝒇(𝒖))𝟐⌉ ) 𝟐⁄  where ⌈ x ⌉ (ceilex) is the least 

integer greater than or equal to x with the condition that the 

number of vertices labeled with 0 and the number of vertices 

labeled with 1 differ by at most 1 and the number of edges labeled 

with 0 and the number of edges labeled with 1 differ by at most 1. 

The graph that admits a Mean Square Cordial Labeling is called 

Mean Square Cordial Graph. In this paper, we proved that Path 

related graphs Sp(Pn,K1,n), (P2∪mk1)+N2 (m-odd), PnʘC3, 

Pn@2k1,m,         PnSm (n-even) are Mean Square Cordial Graphs. 

Index Terms – Mean Square Cordial Graph, Mean Square 

Cordial Labeling, 2000 Mathematics Subject classification 

05C78. 

1. INTRODUCTION 

A graph G is a finite nonempty set of objects called vertices 

together with a set of unordered pairs of distinct vertices of G 

which is called edges. Each pair e = {u,v} of  vertices in E is 

called edges or a line of G. In this paper, we proved that Path 

related graphs Sp(Pn,K1,n), (P2∪mk1)+N2 (m-odd), PnʘC3,      

Pn@2k1,m, PnSm (n-even) are mean square Cordial Graphs. 

For graph theory terminology, we follow [2]. 

2. PRELIMINARIES 

Let G = (V,E) be a graph with p vertices and q edges. A Mean 

Square Cordial Labeling of a Graph G with vertex set V is a 

bijection from V to {0, 1} such that each edge uv is assigned 

the label  ( ⌈(𝑓(𝑢))2 + (𝑓(𝑢))2⌉ ) 2⁄  where ⌈x⌉ (ceilex) is the 

least integer greater than or equal to x with the condition that 

the number of vertices labeled with 0 and the number of vertices 

labeled with 1 differ by at most 1 and the number of edges 

labeled with 0 and the number of edges labeled with 1 differ by 

at most 1.  

The graph that admits a Mean Square Cordial Labeling is called 

Mean Square Cordial Graph. In this paper, we proved that Path 

related graphs Sp(Pn,K1,n), (P2∪mk1)+N2 (m-odd), PnʘC3, 

Pn@2k1,m,          PnSm (n-even)  are Mean Square Cordial 

Graphs. 

 

 

Definition: 2.1 

Sp(Pm ,K1,n) is a graph in which the root of the star K1,n is 

attached at one end of the path Pm.  

Definition: 2.2 

The graph (P2∪mK1) + N2 is a graph with vertex set 

V={z1,z2,x1,x2….xm}∪ {y1,y2}and edge                  set{[(y1z1),( 

y1z2),( y2z1),( y2z2),(z1z2)]∪[(y1xi) ∪ (y2xi) :1≤i≤m]}. 

Definition: 2.3 

The corona G1ʘG2 of two graphs G1 and G2 is defined as the 

graph G obtained by taking one copy of G1 (which has P1 

points) and P1 copies of G2 and joining the ith point of G1 to 

every point in the ith copy of G. A vertex of cycle C3 attaching 

at every vertex of a path Pn is denoted by PnʘC3.     

Definition: 2.4 

Pn@2k1,m is a graph obtained from a path Pn by attaching root 

of a star K1,m at each pendent vertex of Pn. 

Definition: 2.5 

PnSm is a graph obtaining from the path Pn by attaching root 

of a star Sm at every vertex of Pn   

3. MAIN RESULTS 

Theorem: 3.1 

Sp(Pn ,K1,n) is  Mean Square Cordial Graph. 

Proof: 

Let G be Sp(Pn ,K1,n) 

Let V(G) = { ui , vi : 1≤ i≤ n } 

Let E(G) = { [ (uiui+1) : 1≤ i≤ n-1 ] ∪ [ (unvi) : 1≤ i≤ n ] } 

Define f : V(G) → {0,1} 

The vertex labeling are,  

         f(ui) = 0 , 1≤ i≤ n 

         f(vi) = 1 , 1≤ i≤ n 

The induced edge labeling are,  

         f*(uiui+1) = 0 , 1≤ i≤ n-1 
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         f*(unvi) = 1 , 1≤ i≤ n 

Here,  vf(1) = vf(0)  for all n and 

           ef(1) = ef(0) + 1  for all n 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, Sp(Pn ,K1,n) is  Mean Square Cordial Graph 

For example, Sp(P3 ,K1,3) is  Mean Square Cordial Graph as 

shown in figure 3.2. 

 

 

 

 

 

 

 

Theorem: 3.3 

(P2∪mk1) + N2 (m-odd) is Mean Square Cordial Graph. 

Proof: 

Let G be (P2∪mk1) + N2 

Let V(G) = { u , v, x, y , ui : 1≤ i ≤ m } 

Let E(G) = { [ (uv) ] ∪ [ (ux) ] ∪ [ (uy) ] ∪ [ (vx) ] ∪ [ (vy) 

] ∪ [ (xui) : 1≤ i ≤ m ]∪  

                               [ (yui) : 1≤ i ≤ m]} 

Define f : V(G) → {0,1} 

Case: 1 

    When  m = 1, 

    The labeling is, 

 

 

 

 

 

 

 

 

Case: 2 

    When  m > 1, 

    The vertex labeling are, 

            f(u) = 0 

            f(v) = 0 

            f(x) = 0 

            f(y) = 0 

            f(ui) = {
1 ,1 ≤ i ≤

m+3

2

0 ,
m+5

2
≤ i ≤ m

 

    The induced edge labeling are,  

            f*(uv) = 0 

            f*(ux) = 0 

            f*(vx) = 0 

            f*(uy) = 0 

            f*(vy) = 0 

            f*(uix) = {
1 ,1 ≤ i ≤

m+3

2
  

0 ,
m+5

2
≤ i ≤ m

 

            f*(uiy) = {
1 ,1 ≤ i ≤

m+3

2
  

0 ,
m+5

2
≤ i ≤ m

  

Here, vf(0) = vf(1) + 1   for all n and 

          ef(1) = ef(0) + 1  for all n 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, The graph (P2∪mk1) + N2 (m-odd) is Mean Square 

Cordial Graph 

For example, (P2∪5k1) + N2 is Mean Square Cordial Graph as 

shown in figure 3.4. 
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figure 3.2 
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Theorem: 3.5 

 PnʘC3 (n-even) is Mean Square Cordial Graph. 

Proof: 

Let G be PnʘC3  

Let V(G) = { ui :1≤ i≤ n, uij : 1≤ i≤ n, 1≤ j≤ 2 } 

Let E(G) = { [ (uiui+1) : 1≤ i≤ n-1 ]∪ [ (uiuij) : 1≤ i≤ n, 1≤ j≤ 

2 ] ∪ [ (ui1ui2) : 1≤ i≤ n ] } 

Define f : V(G) → {0,1} 

 The vertex labeling are, 

         f(ui) = {
0 , 1 ≤ i ≤

n

2
    

1 ,
n+2

2
≤ i ≤ n

 

         f(uij) = {
0 , 1 ≤ i ≤

n

2
  ,1 ≤ j ≤ 2   

1 ,
n+2

2
≤ i ≤ n ,1 ≤ j ≤ 2

 

The induced edge labeling are,  

         f*(uiui+1) = {
0 , 1 ≤ i ≤

n−2

2
            

1 ,
n

2
≤ i ≤ n − 1        

 

         f*(uiuij) = {
0 , 1 ≤ i ≤

n

2
  ,1 ≤ j ≤ 2  

1 ,
n+2

2
≤ i ≤ n ,1 ≤ j ≤ 2

 

         f*(ui1ui2) = {
0 , 1 ≤ i ≤

n

2
    

1 ,
n+2

2
≤ i ≤ n

 

Here, vf(1) = vf(0) for all n and 

          ef(1) = ef(0) + 1  for all n 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, PnʘC3 (n-even) is Mean Square Cordial Graph 

For example, P4ʘC3 is Mean Square Cordial Graph as shown 

in figure 3.6. 

 

Theorem: 3.7 

 PnʘC3 (n-odd) is Mean Square Cordial Graph. 

Proof: 

Let G be PnʘC3  

Let V(G) = { ui :1≤ i≤ n, uij : 1≤ i≤ n, 1≤ j≤ 2 } 

Let E(G) = { [ (uiui+1) : 1≤ i≤ n-1 ]∪ [ (uiuij) : 1≤ i≤ n, 1≤ j≤ 

2 ] ∪ [ (ui1ui2) : 1≤ i≤ n ] } 

Define f : V(G) → {0,1} 

The vertex labeling are,  

         f(ui) = {
0 , 1 ≤ i ≤

n+1

2
    

1 ,
n+3

2
≤ i ≤ n

 

         f(ui1) = {
0 , 1 ≤ i ≤

n+1

2
     

1 ,
n+3

2
≤ i ≤ n     

 

         f(ui2) = {
0 , 1 ≤ i ≤

n−1

2
     

1 ,
n+1

2
≤ i ≤ n     

 

The induced edge labeling are,  

         f*(uiui+1) = {
0 , 1 ≤ i ≤

n−1

2
            

1 ,
n+1

2
≤ i ≤ n − 1        

 

         f*(uiui1) = {
0 , 1 ≤ i ≤

n+1

2
    

1 ,
n+3

2
≤ i ≤ n 

 

         f*(uiui2) = {
0 , 1 ≤ i ≤

n−1

2
    

1 ,
n+1

2
≤ i ≤ n 

 

         f*(ui1ui2) = {
0 , 1 ≤ i ≤

n−1

2
    

1 ,
n+1

2
≤ i ≤ n    

 

Here,  vf(1) + 1 = vf(0) for all n and 

           ef(0) + 1 = ef(1)  for all n. 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, PnʘC3 (n-odd) is Mean Square Cordial Graph 

For example, P3ʘC3 is Mean Square Cordial Graph as shown 

in figure 3.8. 
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Theorem: 3.9 

Pn@2k1,m (n-even) is Mean Square Cordial Graph. 

Proof: 

Let G be Pn@2k1,m 

Let V(G) = { ( ui , wi ) : 1≤ i≤ m , vi : 1≤ i≤ n } 

Let E(G) = { [ (uiv1) : 1≤ i≤ m ] ∪ [ (vivi+1) : 1≤ i≤ n-1 ] ∪ [ 

(vnwi) : 1≤ i≤ m ] } 

Define f : V(G)→ {0,1} 

Case: 1 

   when n = 2, 

   The labeling is, 

 

 

 

 

 

Case: 2 

   when n > 2 and n ≡ 0 (mod 2), 

   The vertex labeling are, 

          f(ui) = 0 , 1≤ i≤ m 

          f(wi) = 1 , 1≤ i≤ m 

          f(vi) = {
0 , 1 ≤ 𝑖 ≤

𝑛

2
     

1 ,
𝑛+2

2
≤ 𝑖 ≤ 𝑛

 

  The induced edge labeling are,  

          f*(uiv1) = 0 , 1≤ i≤ m 

          f*(vnwi) = 1 , 1≤ i≤ m 

          f*(vivi+1) =  {
0 , 1 ≤ 𝑖 ≤

𝑛−2

2
     

1 ,
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1

 

Here,  vf(1) = vf(0)  for all n and 

           ef(1) = ef(0) + 1  for all n 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, Pn@2k1,m (n-even)  is Mean Square Cordial Graph 

For example, P4@2k1,3 is Mean Square Cordial Graph as 

shown in figure 3.10. 

 

 

 

 

 

 

Theorem: 3.11 

Pn@2k1,m (n-odd) is Mean Square Cordial Graph. 

Proof: 

Let G be Pn@2k1,m 

Let V(G) = { ( ui , wi ) : 1≤ i≤ m , vi : 1≤ i≤ n } 

Let E(G) = { [ (uiv1) : 1≤ i≤ m ] ∪ [ (vivi+1) : 1≤ i≤ n-1 ] ∪ [ 

(vnwi) : 1≤ i≤ m ] } 

Define f : V(G)→ {0,1} 

The vertex labeling are, 

         f(ui) = 0 , 1≤ i≤ m 

         f(wi) = 1 , 1≤ i≤ m 

         f(vi) = {
0 , 1 ≤ 𝑖 ≤

𝑛+1

2
       

1 ,
𝑛+3

2
≤ 𝑖 ≤ 𝑛      

 

The induced edge labeling are,  

         f*(uiv1) = 0 , 1≤ i≤ m 

         f*(vnwi) = 1 , 1≤ i≤ m 

         f*(vivi+1) =  {
0 , 1 ≤ 𝑖 ≤

𝑛−1

2
         

1 ,
𝑛+1

2
≤ 𝑖 ≤ 𝑛 − 1

 

Here,  vf(0) = vf(1) + 1 for all n and 

           ef(0) = ef(1)   for all n 

Therefore, The Graph G satisfies the conditions 

figure 3.8 
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        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, Pn@2k1,m (n-odd) is Mean Square Cordial Graph 

For example, P3@2k1,2 is Mean Square Cordial Graph as 

shown in figure 3.12. 

 

 

 

 

 

 

Theorem: 3.13 

 PnSm (n-even) is Mean Square Cordial Graph. 

Proof: 

Let G be PnSm 

Let V(G) = { ui , uij : 1≤ i ≤ n , 1≤ j ≤ m } 

Let E(G) = { [ (uiui+1) : 1≤ i ≤ n-1 ] ∪ [ (uiuij) : 1≤ i ≤ n , 1≤ 

j ≤ m ] } 

Define f : V(G) → {0,1} 

The vertex labeling are, 

        f(ui) = {
0 , 1 ≤ 𝑖 ≤

𝑛

2
     

1 ,
𝑛+2

2
≤ 𝑖 ≤ 𝑛

 

        f(uij) = {
0 , 1 ≤ 𝑖 ≤

𝑛

2
  ,1 ≤ 𝑗 ≤ 𝑚   

1 ,
𝑛+2

2
≤ 𝑖 ≤ 𝑛 ,1 ≤ 𝑗 ≤ 𝑚

 

The induced edge labeling are, 

        f*(uiui+1) =  {
0 , 1 ≤ 𝑖 ≤

𝑛−2

2
       

1 ,
𝑛

2
≤ 𝑖 ≤ 𝑛 − 1  

  

        f*(uiuij) = {
0 , 1 ≤ 𝑖 ≤

𝑛

2
 , 1 ≤ 𝑗 ≤ 𝑚      

1 ,
𝑛+2

2
≤ 𝑖 ≤ 𝑛 ,1 ≤ 𝑗 ≤ 𝑚 

 

Here,  vf(0) = vf(1)  for all n and 

           ef(1) = ef(0) + 1   for all n 

Therefore, The Graph G satisfies the conditions 

        | vf(1) – vf(0) | ≤ 1 

        | ef(1) – ef(0) | ≤ 1 

Hence, PnSm(n – even) is mean square cordial graph 

For example, P4S3 is mean square cordial graph as shown in 

figure 3.14. 

 

 

 

 

 

 

 

4. CONCLUSION 

Cordial graphs based on digital principles. Mean graphs has its 

own advantages. Combining mean square and cordial may 

yield better applications. Here it is identified some graphs are 

mean square cordial. 
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